Controlling Selmer groups in the higher core rank case
From MaRDI portal
Publication:284485
DOI10.5802/jtnb.933zbMath1411.11065arXiv1312.4052OpenAlexW2963475208MaRDI QIDQ284485
Publication date: 18 May 2016
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1312.4052
Galois representations (11F80) (L)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture (11G40) Iwasawa theory (11R23) Galois cohomology (11R34)
Related Items (11)
Iwasawa theory of Rubin-Stark units and class groups ⋮ Refined class number formulas for \(\mathbb{G}_m\) ⋮ Adelic Euler systems for \(\mathbb{G}_m\) ⋮ Strong Selmer companion elliptic curves ⋮ The work of Barry Mazur ⋮ Stark systems over Gorenstein local rings ⋮ Integral Iwasawa theory of Galois representations for non-ordinary primes ⋮ ON IWASAWA THEORY OF RUBIN–STARK UNITS AND NARROW CLASS GROUPS ⋮ On the theory of Kolyvagin systems of rank 0 ⋮ \(p\)-Selmer group and modular symbols ⋮ Théorie d’Iwasawa des unités de Stark et groupe de classes
Cites Work
- Unnamed Item
- Refined class number formulas for \(\mathbb{G}_m\)
- A generalization of Darmon's conjecture for Euler systems for general \(p\)-adic representations
- The Stark conjectures on Artin \(L\)-functions at \(s=0\). Lecture notes of a course in Orsay edited by Dominique Bernardi and Norbert Schappacher.
- Iwasawa theory and \(p\)-adic heights
- Systèmes d'Euler \(p\)-adiques et théorie d'Iwasawa. (\(p\)-adic Euler systems and Iwasawa theory.)
- Modular elliptic curves and Fermat's Last Theorem
- A Stark conjecture ``over \({\mathbb{Z}}\) for abelian \(L\)-functions with multiple zeros
- Kolyvagin systems
- Euler Systems
This page was built for publication: Controlling Selmer groups in the higher core rank case