On a characterization of bilinear forms on the Dirichlet space
From MaRDI portal
Publication:2845058
DOI10.1090/S0002-9939-2011-11409-6zbMath1276.30063OpenAlexW2074484233MaRDI QIDQ2845058
Joaquin M. Ortega Aramburu, Carmen Cascante
Publication date: 22 August 2013
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0002-9939-2011-11409-6
Toeplitz operators, Hankel operators, Wiener-Hopf operators (47B35) Spaces and algebras of analytic functions of one complex variable (30H99)
Related Items
Bilinear forms on weighted Besov spaces, A remark on the multipliers on spaces of weak products of functions, Riesz capacities of a set due to Dobiński, Onto interpolation for the Dirichlet space and for \(H_1 (\mathbb{D})\), Bilinear forms on homogeneous Sobolev spaces, Totally null sets and capacity in Dirichlet type spaces, Bilinear forms on potential spaces in the unit circle, On the index of invariant subspaces in the space of weak products of Dirichlet functions, Commutators in the two-weight setting, A characterization of certain types of Hankel symbols on the Drury-Arveson space, Weak products of Dirichlet functions
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Bilinear forms on the Dirichlet space
- The Schrödinger operator on the energy space: Boundedness and compactness criteria
- Multipliers of the Dirichlet space
- Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of \({\mathbb{C}}^ n\)
- Carleson measures for weighted holomorphic Besov spaces
- Inégalités à poids pour le projecteur de Bergman dans la boule unité de $C^{n}$
- Carleson measures for weighted Hardy-sobolev spaces
- A Theory of Capacities for Potentials of Functions in Lebesgue Classes.