THE SEIBERG–WITTEN MAP FOR NON-COMMUTATIVE PURE GRAVITY AND VACUUM MAXWELL THEORY
DOI10.1142/S0219887813500230zbMath1277.83066arXiv1209.1331WikidataQ57514529 ScholiaQ57514529MaRDI QIDQ2845340
Marco Figliolia, E. Di Grezia, Patrizia Vitale, Giampiero Esposito
Publication date: 22 August 2013
Published in: International Journal of Geometric Methods in Modern Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1209.1331
non-commutative geometryelectrodynamicsgeneral relativitySeiberg-Witten mapvacuum Einstein equationsYang-MillsMaxwell theory
Yang-Mills and other gauge theories in quantum field theory (81T13) Applications of global analysis to structures on manifolds (57R57) Noncommutative geometry in quantum theory (81R60) Electromagnetic theory (general) (78A25) Methods of noncommutative geometry in general relativity (83C65) Exact solutions to problems in general relativity and gravitational theory (83C15) Einstein-Maxwell equations (83C22) Noncommutative global analysis, noncommutative residues (58J42)
Related Items (3)
Cites Work
- Seiberg-Witten maps for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>gauge invariance and deformations of gravity
- GAUGE AND POINCARÉ INVARIANT REGULARIZATION AND HOPF SYMMETRIES
- Construction of non-Abelian gauge theories on noncommutative spaces
This page was built for publication: THE SEIBERG–WITTEN MAP FOR NON-COMMUTATIVE PURE GRAVITY AND VACUUM MAXWELL THEORY