Factoring Sobolev inequalities through classes of functions
DOI10.1090/S0002-9939-2012-11355-3zbMath1279.46023arXiv1107.2139MaRDI QIDQ2845872
David Alonso-Gutiérrez, Julio Bernués, Jesús Bastero
Publication date: 3 September 2013
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1107.2139
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Inequalities and extremum problems involving convexity in convex geometry (52A40) Inequalities involving derivatives and differential and integral operators (26D10)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An asymmetric affine Pólya-Szegő principle
- The Brunn-Minkowski-Firey theory. I: Mixed volumes and the Minkowski problem
- Centroid surfaces
- From Brunn-Minkowski to sharp Sobolev inequalities
- Pointwise symmetrization inequalities for Sobolev functions and applications
- General \(L_{p}\) affine isoperimetric inequalities
- Affine Moser-Trudinger and Morrey-Sobolev inequalities
- Best constant in Sobolev inequality
- Problèmes isoperimetriques et espaces de Sobolev
- A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities.
- The affine Sobolev inequality.
- \(L_ p\) affine isoperimetric inequalities.
- Sharp affine \(L_ p\) Sobolev inequalities.
- Asymmetric affine \(L_p\) Sobolev inequalities
- Sobolev inequalities: symmetrization and self-improvement via truncation
- Normal and integral currents
- An elementary proof of sharp Sobolev embeddings
- Rearrangements of functions and embedding theorems
- Imbedding theorems of Sobolev type in potential theory.
- A note on limiting cases of sobolev embeddings and convolution inequalities
- A note on L(\infty, q) spaces and Sobolev embeddings
- Isoperimetric Inequalities in Mathematical Physics. (AM-27)