Kazhdan’s property $(T)$ with respect to non-commutative $L_{p}$-spaces
From MaRDI portal
Publication:2846852
DOI10.1090/S0002-9939-2012-11481-9zbMath1279.46049OpenAlexW2764769595MaRDI QIDQ2846852
Publication date: 3 September 2013
Published in: Proceedings of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s0002-9939-2012-11481-9
group representationsMazur mapproperty \((T)\)Haagerup non-commutative \(L_p(\mathcal{M})\)-spacesproperty \(F_{L_p(\mathcal{M})}\)
Geometric group theory (20F65) Noncommutative function spaces (46L52) Kazhdan's property (T), the Haagerup property, and generalizations (22D55)
Related Items (6)
Towards strong Banach property (T) for \(\mathrm{SL}(3,\mathbb R)\) ⋮ Noncommutative maximal ergodic inequalities associated with doubling conditions ⋮ Local rigidity for actions of Kazhdan groups on noncommutative Lp-spaces ⋮ Isometric actions on Lp-spaces: dependence on the value of p ⋮ On groups with property \((T_{\ell_p})\) ⋮ Fixed-point spectrum for group actions by affine isometries on \(L_p\)-spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Operator valued weights in von Neumann algebras. I
- Noncommutative \(L^p\) structure encodes exactly Jordan structure
- Property \((T)\) and rigidity for actions on Banach spaces
- A classification for 2-isometries of noncommutative \(L_p\)-spaces
- An application of orthoisomorphisms to non-commutative \(L^ p\)-isometries
- Finitely summable Fredholm modules over higher rank groups and lattices
- Isometries of non-commutative Lp-spaces
- Non-commutative LP-spaces
- On the Jordan Structure of C ∗ -Algebras
- Formes linéaires sur un anneau d'opérateurs
This page was built for publication: Kazhdan’s property $(T)$ with respect to non-commutative $L_{p}$-spaces