The Hochschild cohomology algebra for a family of self-injective algebras of the tree class $D_{n}$
DOI10.1090/S1061-0022-2012-01220-3zbMath1280.16012OpenAlexW2008029494WikidataQ58174630 ScholiaQ58174630MaRDI QIDQ2849073
Publication date: 16 September 2013
Published in: St. Petersburg Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s1061-0022-2012-01220-3
Hochschild cohomology groupsprojective bimodule resolutionsrepresentation-finite self-injective algebras
(Co)homology of rings and associative algebras (e.g., Hochschild, cyclic, dihedral, etc.) (16E40) Representation type (finite, tame, wild, etc.) of associative algebras (16G60) Representations of quivers and partially ordered sets (16G20) Syzygies, resolutions, complexes in associative algebras (16E05)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Periodic resolutions and self-injective algebras of finite type.
- Stable equivalence classes of self-injective algebras of tree class \(D_n\).
- Algebren, Darstellungsköcher, Überlagerungen und zurück
- Twisted bimodules and Hochschild cohomology for self-injective algebras of class \(A_n\). II.
- Bimodule resolutions of Möbius algebras
- Twisted bimodules and Hochschild cohomology for self-injective algebras of class An