Des points fixes communs pour des difféomorphismes de qui commutent et préservent une mesure de probabilité
DOI10.1017/S1474748012000898zbMath1314.37030arXiv1107.0817OpenAlexW2161118900MaRDI QIDQ2852318
Sebastião Firmo, Patrice Le Calvez, Tomasz Miernowski, François Béguin
Publication date: 8 October 2013
Published in: Journal of the Institute of Mathematics of Jussieu (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1107.0817
fixed pointrecurrenceinvariant measurerotation numberintersection numbertopological foliationconservative homeomorphism
Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces (37E30) Rotation numbers and vectors (37E45)
Related Items (3)
Cites Work
- Un point fixe commun pour des difféomorphismes commutants de \(S^ 2\). (A common fixed point for commutating diffeomorphisms of \(S^ 2\).)
- Symplectic topology as the geometry of generating functions
- An equivariant foliated version of Brouwer's translation theorem
- Difféomorphismes commutants des surfaces et stabilité des fibrations en tores. (Commuting diffeomorphisms of surfaces and stability of fibrations by tori)
- Generalizations of the Poincaré-Birkhoff theorem
- Commuting homeomorphisms of \(S^ 2\)
- Brouwer's plane translation theorem and generalizations of the Poincaré-Birkhoff theorem
- Fixed points of discrete nilpotent group actions on \(S^2\)
- Fixed points of Abelian actions
- Commutators and diffeomorphisms of surfaces
- A note on commuting diffeomorphisms on surfaces
- Topological study of the space of Brouwer homeomorphisms. I
This page was built for publication: Des points fixes communs pour des difféomorphismes de qui commutent et préservent une mesure de probabilité