Estimating the error of Gaussian quadratures with simple and multiple nodes by using their extensions with multiple nodes
From MaRDI portal
Publication:285297
DOI10.1007/s10543-015-0551-3zbMath1342.65102OpenAlexW2003779866MaRDI QIDQ285297
Miodrag M. Spalević, Aleksandar S. Cvetković
Publication date: 19 May 2016
Published in: BIT (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10543-015-0551-3
Gauss quadraturea posteriori error estimateVolterra integral equationsextension with multiple nodesGauss-Kronrod quadraturesKronrod extension
Approximate quadratures (41A55) Numerical quadrature and cubature formulas (65D32) Remainders in approximation formulas (41A80)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Calculation of Gauss quadratures with multiple free and fixed knots
- High-precision Gauss-Turán quadrature rules for Laguerre and Hermite weight functions
- Asymptotic representation of \(L_{p}\)-minimal polynomials, \(1 < p < \infty\)
- Construction of \(\sigma\)-orthogonal polynomials and Gaussian quadrature formulas
- Grauss-Kronrod quadrature formulae for weight functions of Bernstein- Szegö type
- On the remainder term for analytic functions of Gauss-Lobatto and Gauss- Radau quadratures
- Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadrature rules with positive weights
- \(S\)-orthogonality and construction of Gauss-Turán-type quadrature formulae
- Convergence of Gaussian quadrature formulas on infinite intervals
- Stieltjes polynomials and Gauss-Kronrod quadrature for Jacobi weight functions
- Symmetric Gauss-Lobatto and modified anti-Gauss rules
- Convergence of Gaussian quadrature formulas
- On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas
- A historical note on Gauss-Kronrod quadrature
- Calculation of Gaussian-type quadratures with multiple nodes
- Error bounds of the Micchelli-Sharma quadrature formula for analytic functions
- Quadrature formulas for Fourier coefficients
- A note on generalized averaged Gaussian formulas
- Estimating the error of Gauss-Turán quadrature formulas using their extensions
- Quadrature formulae
- Christoffel type functions for \(m\)-orthogonal polynomials
- On generalized averaged Gaussian formulas
- Gauss–Turán Quadrature Formulas: Asymptotics of Weights
- Stieltjes Polynomials and Related Quadrature Rules
- Calculation of Gauss-Kronrod quadrature rules
- On weight functions which admit explicit Gauss-Turán quadrature formulas
- Anti-Gaussian quadrature formulas
- Ultraspherical Gauss--Kronrod Quadrature Is Not Possible for $\lambda > 3$
- Computation of Gauss-Kronrod quadrature rules
- Kronrod extensions with multiple nodes of quadrature formulas for Fourier coefficients
- Error Bounds and Estimates for Gauss--Turán Quadrature Formulae of Analytic Functions
- Calculation of Gauss Quadrature Rules
- An overview of the computational aspects of Kronrod quadrature rules
This page was built for publication: Estimating the error of Gaussian quadratures with simple and multiple nodes by using their extensions with multiple nodes