FRÉCHET DIFFERENTIABILITY OF THE NORM IN A SOBOLEV SPACE WITH A VARIABLE EXPONENT
DOI10.1142/S0219530513500127zbMath1285.46009OpenAlexW2075638967MaRDI QIDQ2854020
Pavel Matei, Gheorghe Dinca, Philippe G. Ciarlet
Publication date: 17 October 2013
Published in: Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1142/s0219530513500127
uniformly convex spacesmooth spaceSobolev space with variable exponentFréchet differentiability of the norm
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Fréchet and Gateaux differentiability in optimization (49J50) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Geometry and structure of normed linear spaces (46B20)
Related Items (2)
Cites Work
- Eigenvalues, embeddings and generalised trigonometric functions
- Lebesgue and Sobolev spaces with variable exponents
- A Poincaré inequality in a Sobolev space with a variable exponent
- A theorem on duality mappings in Banach spaces
- Functional analysis, Sobolev spaces and partial differential equations
- Geometry of Banach spaces. Selected topics
- Contributions to the spectral theory for nonlinear operators in Banach spaces
- Geometry of Sobolev spaces with variable exponent: Smoothness and uniform convexity
- The fixed point index for local condensing maps
- Reflexivity and the sup of linear functionals
- GEOMETRY OF SOBOLEV SPACES WITH VARIABLE EXPONENT AND A GENERALIZATION OF THE p-LAPLACIAN
- AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY
- Maximal function on generalized Lebesgue spaces L^p(⋅)
- Eine Verallgemeinerung der Sobolewschen Räume und ihre Anwendung zur Lösung von Variationsproblemen
- On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\)
This page was built for publication: FRÉCHET DIFFERENTIABILITY OF THE NORM IN A SOBOLEV SPACE WITH A VARIABLE EXPONENT