Algebras whose Tits form accepts a maximal omnipresent root
DOI10.1090/S0002-9947-2013-05841-2zbMath1292.16012arXiv1107.3299OpenAlexW2962783104MaRDI QIDQ2862134
José Antonio de la Peña, Andrzej Skowroński
Publication date: 14 November 2013
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1107.3299
tame algebrastilted algebrasdimension vectors of indecomposable representationsexceptional indexmaximal omnipresent rootsroots of Tits formsweakly non-negative quadratic forms
Representation type (finite, tame, wild, etc.) of associative algebras (16G60) Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers (16G70) Representations of quivers and partially ordered sets (16G20)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Tame algebras and Tits quadratic forms.
- Critical simply connected algebras
- Tame algebras and integral quadratic forms
- Minimal algebras of infinite representation type with preprojective component
- On the representation type of one point extensions of tame concealed algebras
- Treue einfach zusammenhaengende Algebren. I
- Tame algebras with sincere directing modules
- On degenerations of tame and wild algebras
- On the deformation theory of finite dimensional algebras
- Unzerlegbare Darstellungen. I. (Indecomposable representations. I)
- Algebras and Quadratic Forms
- On Omnipresent Modules in Simply Connected Algebras
- On Tame Algebras and Bocses
- Tilting Wild Algebras
- Forbidden Subcategories of Non-Polynomial Growth Tame Simply Connected Algebras
- Coordinates of maximal roots of weakly non-negative unit forms
- On the dimension of the module-varieties of tame and weld algebras
- Irreducible components of varieties of modules
- Homological Expressions of the Tits Form of a Finite Dimensional Algebra
This page was built for publication: Algebras whose Tits form accepts a maximal omnipresent root