Metric freeness and projectivity for classical and quantum normed modules
From MaRDI portal
Publication:2863124
DOI10.1070/SM2013v204n07ABEH004330zbMath1288.46032arXiv1112.5750OpenAlexW2081297691MaRDI QIDQ2863124
Publication date: 21 November 2013
Published in: Sbornik: Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1112.5750
Theorems of Hahn-Banach type; extension and lifting of functionals and operators (46A22) Projective and injective objects in functional analysis (46M10) Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX) (46H25)
Related Items
Metrically homological properties and some notions of amenability ⋮ Homological triviality of the category of \(L_p\)-modules ⋮ On character projectivity Of Banach modules ⋮ Metrically and topologically projective ideals of Banach algebras ⋮ The geometry of projective, injective, and flat Banach modules ⋮ Free Vector Lattices and Free Vector Lattice Algebras ⋮ Finite presentation, the local lifting property, and local approximation properties of operator modules ⋮ Free and projective generalized multinormed spaces ⋮ Tensor products and multipliers of modules \(L_p\) on locally compact measure spaces ⋮ Metrically projective quantum normed spaces that are preduals of von Neumann algebras
Cites Work
- The standard dual of an operator space
- Tensor products of operator spaces
- Hebbare lokalkonvexe Räume
- Metric version of flatness and Hahn–Banach type theorems for normed modules over sequence algebras
- Extreme flatness of normed modules and Arveson-Wittstock type theorems
- Projective Fréchet modules with the approximation property
- Extreme Version of Projectivity for Normed Modules Over Sequence Algebras
- History of Banach Spaces and Linear Operators
- ON THE HOMOLOGICAL DIMENSION OF NORMED MODULES OVER BANACH ALGEBRAS
- Une Caracterisation Vectorielle-Metrique Des Espaces L1
- Lectures on amenability
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item