On integral kernels for Dirichlet series associated to Jacobi forms
From MaRDI portal
Publication:2874649
DOI10.1112/jlms/jdu016zbMath1298.11039OpenAlexW2169949854MaRDI QIDQ2874649
Publication date: 8 August 2014
Published in: Journal of the London Mathematical Society (Search for Journal in Brave)
Full work available at URL: http://hdl.handle.net/10533/135125
Theta series; Weil representation; theta correspondences (11F27) Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66) Jacobi forms (11F50)
Related Items (2)
Nonvanishing of kernel functions and Poincaré series for Jacobi forms ⋮ A study on twisted Koecher-Maass series of Siegel cusp forms via an integral kernel
Cites Work
- Unnamed Item
- Unnamed Item
- A converse theorem for Jacobi forms
- The theory of Jacobi forms
- Unipotent vector bundles and higher-order non-holomorphic Eisenstein series
- Heegner points and derivatives of \(L\)-series. II
- \(L\)-functions for Jacobi forms à la Hecke
- Nonvanishing of Hecke \(L\)-functions associated to cusp forms inside the critical strip
- On Koecher-Maass series of Siegel modular forms
- Kernels of \(L\)-functions of cusp forms
- Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art
- Easy proofs of Riemann’s functional equation for $\zeta (s)$ and of Lipschitz summation
- Period polynomials and explicit formulas for Hecke operators on Γ0(2)
- Dirichlet and Poincaré series
- Explicit formulas for Hecke operators on cusp forms, Dedekind symbols and period polynomials
- Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung
This page was built for publication: On integral kernels for Dirichlet series associated to Jacobi forms