Quantitative analysis of the Satake parameters of \mathrm GL2representations with prescribed local representations
From MaRDI portal
Publication:2875427
DOI10.4064/aa164-4-3zbMath1317.11052OpenAlexW2315006423MaRDI QIDQ2875427
Yuk-Kam Lau, Yingnan Wang, Charles C. C. Li
Publication date: 14 August 2014
Published in: Acta Arithmetica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.4064/aa164-4-3
Representation-theoretic methods; automorphic representations over local and global fields (11F70) Spectral theory; trace formulas (e.g., that of Selberg) (11F72) Representations of Lie and linear algebraic groups over global fields and adèle rings (22E55)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A family of Calabi-Yau varieties and potential automorphy. II.
- On the spectral side of Arthur's trace formula -- absolute convergence
- Quantitative version of the joint distribution of eigenvalues of the Hecke operators
- On the Arthur-Selberg trace formula for \(\mathrm{GL}(2)\)
- On the distribution of Satake parameters of \(\text{GL}_2\) holomorphic cuspidal representations
- Effective equidistribution of eigenvalues of Hecke operators
- Fourier coefficients of cusp forms
- The distribution of the eigenvalues of Hecke operators
- Répartition asymptotique des valeurs propres de l’opérateur de Hecke 𝑇_𝑝
- Non-vanishing of \(L\)-functions and applications
This page was built for publication: Quantitative analysis of the Satake parameters of \mathrm GL2representations with prescribed local representations