Sur la multiplicité des valeurs propres du Laplacien de Witten
From MaRDI portal
Publication:2884388
DOI10.1090/S0002-9947-2012-05363-3zbMath1242.58015arXiv1003.5391MaRDI QIDQ2884388
Publication date: 29 May 2012
Published in: Transactions of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1003.5391
Related Items (4)
Existence of Dirac eigenvalues of higher multiplicity ⋮ On Witten Laplacians and Brascamp-Lieb's inequality on manifolds with boundary ⋮ Prescription of finite Dirichlet eigenvalues and area on surface with boundary ⋮ Riemannian metrics with prescribed volume and finite parts of Dirichlet spectrum
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Prescription of the multiplicity of the eigenvalues of the Hodge-de Rham Laplacian
- Sur la multiplicité de la premiere valeur propre des surfaces riemanniennes
- Conformal minoration of the spectrum of the Hodge-de Rham Laplacian
- Prescribing the spectrum of a Hodge-de Rham Laplacian within a conformal class
- Sur la multiplicité de la première valeur propre non nulle du Laplacien. (On the multiplicity of the first nonzero eigenvalue of the Laplacian)
- Sur une hypothèse de transversalité d'Arnold. (About a transversality hypothesis of Arnold)
- Supersymmetry and Morse theory
- Eigenfunctions and nodal sets
- On the multiplicity of eigenvalues of the Laplacian on surfaces
- The \(p\)-spectrum of the Laplacian on compact hyperbolic three manifolds
- Multiplicity of the second Schrödinger eigenvalue on closed surfaces
- Spectral shift and multiplicity of the first eigenvalue of the magnetic Schrödinger operator in two dimensions.
- Discontinuity of geometric expansions
- Construction of eigenvalues of multiplicity 2 of the Hodge-de Rham Laplacian
- Hodge-Laplace operator on compact manifolds deprived of a finite number of balls.
- Sobolev inequalities for differential forms and \(L_{q,p}\)-cohomology
- Prescribing eigenvalues of the Dirac operator
- Principe de Dirichlet pour les formes différentielles
- Construction de laplaciens dont une partie finie du spectre est donnée
- Eigenvalues of the Laplacian on Forms
- Sur la multiplicité de la première valeur propre de l’opérateur de Schrödinger avec champ magnétique sur la sphère
- Riemannian Metrics with Large First Eigenvalue on Forms of Degree p
- Double forms, curvature structures and the $(p,q)$-curvatures
This page was built for publication: Sur la multiplicité des valeurs propres du Laplacien de Witten