Equivariant class group. I: Finite generation of the Picard and the class groups of an invariant subring.
From MaRDI portal
Publication:288490
DOI10.1016/j.jalgebra.2016.02.025zbMath1348.13010arXiv1309.2367OpenAlexW1750282735MaRDI QIDQ288490
Publication date: 26 May 2016
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1309.2367
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Equivariant Matlis and the local duality
- The total coordinate ring of a normal projective variety
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Première partie). Rédigé avec la colloboration de J. Dieudonné
- Toroidal Algebraic Groups
- Finite Generation of Class Groups of Rings of Invariants
- Class Groups of Rings of Invariants
- Foundations of Grothendieck Duality for Diagrams of Schemes
- Foundations of Grothendieck Duality for Diagrams of Schemes
- Stacks Project Expository Collection
- Equivariant Total Ring of Fractions and Factoriality of Rings Generated by Semi-Invariants
- On the 14-th Problem of Hilbert
- A Units Theorem Applied to Hopf Algebras and Amitsur Cohomology
This page was built for publication: Equivariant class group. I: Finite generation of the Picard and the class groups of an invariant subring.