On Finite-Dimensional Absolute-Valued Algebras Satisfying (xp,xq,xr) = 0
From MaRDI portal
Publication:2888562
DOI10.1080/00927872.2010.481195zbMath1272.17010arXiv1002.2352OpenAlexW2963737666MaRDI QIDQ2888562
A. Chandid, Abdellatif Rochdi, María Isabel Ramírez Alvarez
Publication date: 1 June 2012
Published in: Communications in Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1002.2352
Related Items
A hyperbolic model for viscous Newtonian flows, A note on absolute-valued algebras satisfying (xx2)x = x(x2x), Duplication methods for embeddings of real division algebras, Four-Dimensional Real Third-Power Associative Division Algebras, On absolute-valued algebras satisfying \((x^2,y,x^2)=0\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On finite dimensional absolute valued algebras satisfying \((x,x,x)=0\)
- Absolute valued algebras with an involution
- Sur les dimensions des algèbres absolument valuees
- Quelques résultats sur les algèbres absolument valuees
- Sur les algèbres absolument valuées qui vérifient l'identité \((x,x,x)=0\)
- Absolute valued algebras containing a central idempotent
- Third power associative composition algebras
- Two-graded absolute valued algebras
- Absolute valued real algebras
- Absolute Valued Algebras Satisfying (x2,x2,x2) = 0
- On composition and absolute-valued algebras
- Absolute Valued Algebras with Involution
- Real Flexible Division Algebras
- Composition algebras of degree two
- Absolute valued algebras satisfying \((x,x,x^2)=0\)