On the Gauss-Bonnet-Chern formula for real Finsler vector bundles
From MaRDI portal
Publication:288867
DOI10.1016/j.difgeo.2016.03.010zbMath1339.53023OpenAlexW2321348607WikidataQ115355690 ScholiaQ115355690MaRDI QIDQ288867
Wei Zhao, Li-Xia Yuan, Yi-Bing Shen
Publication date: 27 May 2016
Published in: Differential Geometry and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.difgeo.2016.03.010
Topology of vector bundles and fiber bundles (57R22) Connections (general theory) (53C05) Local differential geometry of Finsler spaces and generalizations (areal metrics) (53B40)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Gauss-Bonnet theorem for vector bundles
- Superconnections, Thom classes, and equivariant differential forms
- On the volume of unit tangent spheres in a Finsler manifold
- A note on the Gauss-Bonnet theorem for Finsler spaces
- Quelques théoremes de géométrie différentielle globale
- A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds
- On the curvatura integra in a Riemannian manifold
- ON THE GAUSS–BONNET FORMULA IN RIEMANN–FINSLER GEOMETRY
- Negative Vector Bundles and Complex Finsler Structures
- Some formulas of Gauss-Bonnet-Chern type in Riemann-Finsler geometry.
- Angular Measure and Integral Curvature
This page was built for publication: On the Gauss-Bonnet-Chern formula for real Finsler vector bundles