Modelling covariance structure in bivariate marginal models for longitudinal data
From MaRDI portal
Publication:2913856
DOI10.1093/BIOMET/ASS031zbMath1437.62662OpenAlexW2122295078MaRDI QIDQ2913856
Publication date: 21 September 2012
Published in: Biometrika (Search for Journal in Brave)
Full work available at URL: https://semanticscholar.org/paper/64ce9d9caf401f3a1e8f53a1a01ab0b82e24ed8e
longitudinal datamatrix logarithmblock triangular factorizationcovariance modellingbivariate marginal modellog-innovation matrix modelling
Related Items (10)
Robust estimation for the correlation matrix of multivariate longitudinal data ⋮ Robust modeling of multivariate longitudinal data using modified Cholesky and hypersphere decompositions ⋮ Analysis of multivariate longitudinal data using ARMA Cholesky and hypersphere decompositions ⋮ Triangular angles parameterization for the correlation matrix of bivariate longitudinal data ⋮ Modified distribution-free goodness-of-fit test statistic ⋮ A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data ⋮ Adaptive robust estimation in joint mean–covariance regression model for bivariate longitudinal data ⋮ Risk-predictive probabilities and dynamic nonparametric conditional quantile models for longitudinal analysis ⋮ Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data ⋮ Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data
This page was built for publication: Modelling covariance structure in bivariate marginal models for longitudinal data