A genus formula for the wild étale kernel
From MaRDI portal
Publication:291608
DOI10.5802/ambp.352zbMath1343.11087OpenAlexW2561501124MaRDI QIDQ291608
Publication date: 10 June 2016
Published in: Annales Mathématiques Blaise Pascal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.5802/ambp.352
(K)-theory of global fields (11R70) Étale cohomology, higher regulators, zeta and (L)-functions ((K)-theoretic aspects) (19F27) Galois cohomology (11R34)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Étale analogs of \(p\)-tower class field
- On motivic cohomology with \(\mathbb{Z}/l\)-coefficients
- Bounds for étale capitulation kernels. II
- Über gewisse Galoiscohomologiegruppen
- K-théorie des anneaux d'entiers de corps de nombres et cohomologie etale
- Relations between \(K_2\) and Galois cohomology
- Galois structure of \(K\)-groups of rings of integers
- Bounds for étale capitulation kernels
- Codescent in étale \(K\)-theory and number fields
- Galois co-descent for étale wild kernels and capitulation
- An idelic approach to the wild kernel
- Galois descent and \(K_ 2\) of number fields
- Tate kernels and capitulation
- Norm index formula for the Tate kernels and applications
- Algebraic and Etale K-Theory
- A Note on K 2 and the Theory of ℤ p -Extensions
- Analogues supérieurs du noyau sauvage
- Introduction to Algebraic K-Theory. (AM-72)