Lebesgue Points for Orlicz-Sobolev Functions on Metric Measure Spaces
DOI10.2478/V10157-011-0012-5zbMath1274.46068OpenAlexW2093637159MaRDI QIDQ2919592
Publication date: 4 October 2012
Published in: Annals of the Alexandru Ioan Cuza University - Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2478/v10157-011-0012-5
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Maximal functions, Littlewood-Paley theory (42B25) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Functions of one variable (26A99)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Strongly nonlinear potential theory on metric spaces
- Pointwise behaviour of Orlicz-Sobolev functions
- Differentiability of Lipschitz functions on metric measure spaces
- Lebesgue points for Sobolev functions on metric spaces.
- Lectures on analysis on metric spaces
- Another extension of Orlicz--Sobolev spaces to metric spaces
- Orlicz spaces for which the Hardy-Littlewood maximal operator is bounded
- Newtonian spaces: An extension of Sobolev spaces to metric measure spaces
- Sobolev spaces on an arbitrary metric space
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- A generalization of Orlicz–Sobolev spaces on metric measure spaces via Banach function spaces
This page was built for publication: Lebesgue Points for Orlicz-Sobolev Functions on Metric Measure Spaces