Hopf modules and the fundamental theorem for Hopf (co)quasigroups
From MaRDI portal
Publication:2920182
zbMath1253.16030arXiv0912.3452MaRDI QIDQ2920182
Publication date: 25 October 2012
Full work available at URL: https://arxiv.org/abs/0912.3452
Hopf algebrasantipodesHopf modulesGalois mapsHopf quasigroupsHopf coquasigroupsright Galois condition
Related Items
Quasitriangular Hopf group-quasialgebras and generalized quantum Yang–Baxter equations, A characterization of weak Hopf (co) quasigroups, The antipode and the (co)invariants of a finite Hopf (co)quasigroup, Algebraic properties of quantum quasigroups, Generalized Yetter–Drinfeld (quasi)modules and Yetter–Drinfeld–Long bi(quasi)modules for Hopf quasigroups, A new approach to braided monoidal categories, Schur–Weyl quasi-duality and (co)triangular Hopf quasigroups, MONOIDAL FUNCTORS AND EXACT SEQUENCES OF GROUPS FOR HOPF QUASIGROUPS, Double centralizer properties related to (co)triangular Hopf coquasigroups, Projections and Yetter-Drinfel'd modules over Hopf (co)quasigroups, Multiplication alteration by two-cocycles: the non-associative version, Fundamental theorems of Doi-Hopf modules in a nonassociative setting, Hopf quasicomodules and Yetter-Drinfel’d quasicomodules, Faithfully flat descent for magmas, The fundamental theorem of Hopf modules for Hopf braces