A stochastic Gauss-Bonnet-Chern formula
DOI10.1007/s00440-015-0630-zzbMath1346.35140arXiv1408.5746OpenAlexW2040633291MaRDI QIDQ292125
Publication date: 10 June 2016
Published in: Probability Theory and Related Fields (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1408.5746
curvaturecurrentsconnectionsGaussian measuresGauss-Bonnet-Chern theoremKac-Rice formulaEuler formrandom sections
Geometric probability and stochastic geometry (60D05) Spectral problems; spectral geometry; scattering theory on manifolds (58J50) Asymptotic distributions of eigenvalues in context of PDEs (35P20) Pseudodifferential and Fourier integral operators on manifolds (58J40) Integral geometry (53C65) Heat and other parabolic equation methods for PDEs on manifolds (58J35)
Related Items
Cites Work
- A note on the Gauss-Bonnet-Chern theorem for general connection
- Stochastic local Gauss-Bonnet-Chern theorem
- Processus linéaires, processus généralisés
- The Gauss-Bonnet-Chern theorem: A probabilistic perspective
- Level Sets and Extrema of Random Processes and Fields
- Gaussian Measures on Function Spaces
- On the small balls problem for equivalent Gaussian measures
- Random Fields and Geometry
- Existence of Universal Connections
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item