Aspects of local-to-global results
From MaRDI portal
Publication:2922868
DOI10.1112/blms/bdu061zbMath1302.42030arXiv1301.7273OpenAlexW2017714863MaRDI QIDQ2922868
Niko Marola, Antti V. Vähäkangas, Ritva Hurri-Syrjänen
Publication date: 15 October 2014
Published in: Bulletin of the London Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1301.7273
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Function spaces arising in harmonic analysis (42B35)
Related Items
Nontrivial examples of \(JN_p\) and \(VJN_p\) functions ⋮ John-Nirenberg space on LCA groups ⋮ Duality and distance formulas in Lipschitz-Hölder spaces ⋮ The John-Nirenberg space: equality of the vanishing subspaces \(VJN_p\) and \(CJN_p\) ⋮ Local to global results for spaces of BMO type ⋮ A bridge connecting Lebesgue and Morrey spaces via Riesz norms ⋮ Localized John-Nirenberg-Campanato spaces ⋮ 𝐁𝐌𝐎 on shapes and sharp constants ⋮ The space \(JN_{p}\): nontriviality and duality ⋮ John-Nirenberg-Campanato spaces ⋮ Boundedness of Calderón-Zygmund operators on special John-Nirenberg-Campanato and Hardy-type spaces via congruent cubes ⋮ Special John-Nirenberg-Campanato spaces via congruent cubes ⋮ Vanishing John-Nirenberg spaces ⋮ FRACTIONAL SOBOLEV–POINCARÉ AND FRACTIONAL HARDY INEQUALITIES IN UNBOUNDED JOHN DOMAINS ⋮ Hardy inequalities in Triebel-Lizorkin spaces. II: Aikawa dimension ⋮ Median-type John-Nirenberg space in metric measure spaces
Cites Work
- On fractional Poincaré inequalities
- Funktionen beschränkter mittlerer Oszillation
- Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type
- A sum operator with applications to self-improving properties of Poincaré inequalities in metric spaces
- Sobolev-Poincaré implies John
- A note on the dimensions of Assouad and Aikawa
- Trudinger inequalities without derivatives
- John–Nirenberg lemmas for a doubling measure
- On functions of bounded mean oscillation
- Rotation and strain
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item