Expression d'un facteur epsilon de paire par une formule intégrale
From MaRDI portal
Publication:2922902
DOI10.4153/CJM-2013-042-4zbMath1304.22020arXiv1212.1082OpenAlexW2313977610MaRDI QIDQ2922902
Publication date: 15 October 2014
Published in: Canadian Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1212.1082
representation theoryepsilon factorsp-adic reductive groupstwisted groupslocal Gan-Gross-Prasad conjecture
Representation theory for linear algebraic groups (20G05) Local ground fields in algebraic geometry (14G20) (p)-adic theory, local fields (11F85) Representations of Lie and linear algebraic groups over local fields (22E50)
Related Items (8)
The local Gan-Gross-Prasad conjecture for \(U(3)\times U(2)\): the non-generic case ⋮ Local theta correspondence of tempered representations and Langlands parameters ⋮ Endoscopie et conjecture locale raffinée de Gan–Gross–Prasad pour les groupes unitaires ⋮ Relative trace formulae and the Gan-Gross-Prasad conjectures ⋮ Theta lifting and Langlands functoriality ⋮ The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case ⋮ The Gross-Prasad conjecture and local theta correspondence ⋮ The local Gan-Gross-Prasad conjecture for \(U(n + 1) \times U(n)\): a non-generic case
This page was built for publication: Expression d'un facteur epsilon de paire par une formule intégrale