Classification of subdivision rules for geometric groups of low dimension
From MaRDI portal
Publication:2922927
DOI10.1090/S1088-4173-2014-00269-0zbMath1315.57024arXiv1409.2563OpenAlexW2962707414MaRDI QIDQ2922927
Publication date: 15 October 2014
Published in: Conformal Geometry and Dynamics of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1409.2563
Geometric group theory (20F65) Graphs and abstract algebra (groups, rings, fields, etc.) (05C25) General geometric structures on low-dimensional manifolds (57M50)
Related Items
The Heisenberg group is pan-rational ⋮ Expansion properties for finite subdivision rules. I. ⋮ Unnamed Item
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Constructing subdivision rules from polyhedra with identifications
- Groups of polynomial growth and expanding maps. Appendix by Jacques Tits
- Géométrie et théorie des groupes. Les groupes hyperboliques de Gromov. (Geometry and group theory. The hyperbolic groups of Gromov)
- Convergence groups and Seifert fibered 3-manifolds
- The combinatorial Riemann mapping theorem
- The lower algebraic \(K\)-theory of virtually infinite cyclic groups
- Gromov hyperbolic spaces
- Expansion complexes for finite subdivision rules. II
- Constructing subdivision rules from alternating links
- Homeomorphic conjugates of Fuchsian groups.
- Recognizing constant curvature discrete groups in dimension 3
- Finite subdivision rules
- Expansion complexes for finite subdivision rules. I
- Convergence groups are Fuchsian groups