Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model
DOI10.1063/1.4895465zbMath1300.81069arXiv1401.1090OpenAlexW3099273773WikidataQ115333246 ScholiaQ115333246MaRDI QIDQ2924908
Publication date: 20 October 2014
Published in: Journal of Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1401.1090
Two-dimensional field theories, conformal field theories, etc. in quantum mechanics (81T40) Loop groups and related constructions, group-theoretic treatment (22E67) Quantization in field theory; cohomological methods (81T70) Applications of Lie groups to the sciences; explicit representations (22E70) Groups and algebras in quantum theory and relations with integrable systems (81R12) Constrained dynamics, Dirac's theory of constraints (70H45) Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory) (14D21) Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations (37A20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Poisson-Lie \(T\)-duality and non-trivial monodromies
- Poisson Lie groups, dressing transformations, and Bruhat decompositions
- Reduction of symplectic manifolds with symmetry
- Boundary \(G/G\) theory and topological Poisson-Lie sigma model
- Symplectic geometries on \(T^*\widetilde {G}\), Hamiltonian group actions and integrable systems
- Hamiltonian loop group actions and T-duality for group manifolds
- Sur la géométrie différentielle des groupes de Lie de dimension infinite et ses applications à l'hydrodynamique des fluides parfaits
- Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
- Foundations of Quantum Mechanics
- Dressing transformations and Poisson group actions
- Poisson-Lie \(T\)-duality
- Poisson-Lie \(T\)-duality for quasitriangular Lie bialgebras
This page was built for publication: Dirac approach to constrained submanifolds in a double loop group: From Wess-Zumino-Novikov-Witten to Poisson-Lie σ-model