Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus de l'espace projectif
From MaRDI portal
Publication:2936968
DOI10.24033/bsmf.2666zbMath1330.14037OpenAlexW2963363046MaRDI QIDQ2936968
Publication date: 7 January 2015
Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)
Full work available at URL: http://smf4.emath.fr/en/Publications/Bulletin/142/html/smf_bull_142_269-301.php
Arithmetic ground fields (finite, local, global) and families or fibrations (14D10) Varieties over global fields (11G35) Global ground fields in algebraic geometry (14G25)
Related Items (3)
Progress concerning the local-global principle for zero-cycles on algebraic varieties ⋮ Towards the Brauer-Manin obstruction on varieties fibred over the projective line ⋮ On the fibration method for zero-cycles and rational points
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The local-global principle for zero cycles on certain fibrations over a curve. I.
- Zero cycles on fibrations over a curve of arbitrary genus
- Intersections of two quadrics and pencils of curves of genus 1
- Some observations on motivic cohomology of arithmetic schemes
- Insufficiency of the Brauer-Manin obstruction applied to étale covers
- Zero-cycles on rational surfaces over number fields
- Fibration method and Manin obstruction
- Rationally connected varieties over finite fields
- A finiteness theorem for the Chow group of zero-cycles of a linear algebraic group on a \(p\)-adic field
- The arithmetic of the Chow group of zero-cycles
- Manin obstruction to strong approximation for homogeneous spaces
- A finiteness theorem for the Brauer group of abelian varieties and 𝐾3 surfaces
- On the Brauer–Manin obstruction for zero-cycles on curves
- Zéro-cycles de degré 1 sur les solides de Poonen
- Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties.
- Flèches de spécialisations en cohomologie étale et applications arithmétiques
- Rational points and zero-cycles on fibred varieties: Schinzel's hypothesis and Salberger's device
- Obstruction de Brauer-Manin pour les zéro-cycles sur des fibrations en variétés de Severi-Brauer
- THE BRAUER–MANIN OBSTRUCTION FOR ZERO-CYCLES ON SEVERI–BRAUER FIBRATIONS OVER CURVES
- Principe local-global pour les zéro-cycles sur les surfaces réglées
- Families of rationally connected varieties
- The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer.
- Arithmetic of 0-cycles on varieties defined over number fields
- Spécialisation des conditions de Manin pour les variétés fibrées au-dessus de l'espace projectif
- Number of Points of Varieties in Finite Fields
- Higher-dimensional algebraic geometry
This page was built for publication: Principe local-global pour les zéro-cycles sur certaines fibrations au-dessus de l'espace projectif