Representations of metaplectic groups II: Hecke algebra correspondences
From MaRDI portal
Publication:2937166
DOI10.1090/S1088-4165-2012-00423-XzbMath1305.22020OpenAlexW2023343234MaRDI QIDQ2937166
Publication date: 8 January 2015
Published in: Representation Theory of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1090/s1088-4165-2012-00423-x
Theta series; Weil representation; theta correspondences (11F27) Representations of Lie and linear algebraic groups over local fields (22E50)
Related Items (6)
Hecke algebra correspondences for the metaplectic group ⋮ Formal degrees and local theta correspondence ⋮ The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case ⋮ A minimal even type of the 2-adic Weil representation ⋮ Iwahori component of Bessel model spaces ⋮ The Zelevinsky classification of unramified representations of the metaplectic group
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Description de la correspondance de Howe en termes de classification de Kazhdan-Lusztig. (Description of the Howe correspondence in terms of the Kazhdan-Lusztig classification)
- On modules over the Hecke algebra of a p-adic group
- On the local theta-correspondence
- Proof of the Deligne-Langlands conjecture for Hecke algebras
- Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup
- The Poincaré series of a Coxeter group
- Formal degrees and local theta correspondence
- Sur certains groupes d'opérateurs unitaires
- On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups
- Smooth representations of reductive p -ADIC groups: structure theory via types
- On unramified representations of covering groups
- Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence
- Sur les sous-groupes arithmétiques des groupes semi-simples déployés
This page was built for publication: Representations of metaplectic groups II: Hecke algebra correspondences