Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology
DOI10.1145/1837934.1837984zbMath1321.68529OpenAlexW1986124084MaRDI QIDQ2946547
Jean-Charles Faugère, Pierre-Jean Spaenlehauer, Mohab Safey El Din
Publication date: 17 September 2015
Published in: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1145/1837934.1837984
determinantal idealsGröbner basesmultivariate cryptographydegree of regularitypolynomial systems solvinggeneralized nonlinear eigenvalue problemmulti-homogeneous ideals
Analysis of algorithms and problem complexity (68Q25) Symbolic computation and algebraic computation (68W30) Cryptography (94A60) Eigenvalues, singular values, and eigenvectors (15A18)
Related Items (26)
Uses Software
Cites Work
- Differential algebra for derivations with nontrivial commutation rules
- Generating differential invariants
- Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds
- Smooth and algebraic invariants of a group action: Local and global constructions
- Differential invariants of a Lie group action: syzygies on a generating set
- Invariants différentiels d'un pseudogroupe de Lie. I
- Invariants différentiels d'un pseudogroupe de Lie. II
- Higher order contact of submanifolds of homogeneous spaces
- Moving coframes. II: Regularization and theoretical foundations
- Rational invariants of a group action. Construction and rewriting
- Differential invariants of conformal and projective surfaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology