Asymptotic behavior of solutions to the drift-diffusion equation with critical dissipation
From MaRDI portal
Publication:295516
DOI10.1007/s00023-015-0428-7zbMath1346.35022arXiv1509.06119OpenAlexW3103391520MaRDI QIDQ295516
Masakazu Yamamoto, Yuusuke Sugiyama
Publication date: 13 June 2016
Published in: Annales Henri Poincaré (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1509.06119
Asymptotic behavior of solutions to PDEs (35B40) PDEs in connection with optics and electromagnetic theory (35Q60) Fractional partial differential equations (35R11)
Related Items (4)
Asymptotic expansion of solutions to the drift-diffusion equation with fractional dissipation ⋮ Large-time asymptotics of a fractional drift-diffusion-Poisson system via the entropy method ⋮ Asymptotics of chemotaxis systems with fractional dissipation for small data in critical Sobolev space ⋮ On a drift-diffusion system for semiconductor devices
Cites Work
- Unnamed Item
- Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Musielak-Orlicz spaces
- Large-time behavior of solutions to the drift-diffusion equation with fractional dissipation.
- Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space
- Far field asymptotics of solutions to convection equation with anomalous diffusion
- Exploding solutions for a nonlocal quadratic evolution problem
- Large time behavior for convection-diffusion equations in \(\mathbb{R}{} ^ N\)
- Asymptotic behavior of solutions of transport equations for semiconductor devices
- Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems
- A maximum principle applied to quasi-geostrophic equations
- Global solutions of the time-dependent drift-diffusion semiconductor equations
- A nonlocal singular parabolic problem modelling gravitational interaction of particles
- Existence and analyticity of solutions to the drift-diffusion equation with critical dissipation
- Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior
- Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space
- A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation
- The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system
- Large time behavior of solutions to the generalized Burgers equations
- Well-posedness for the drift-diffusion system in \(L^p\) arising from the semiconductor device simulation
- The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations
- Decay Estimates and Large Time Behavior of Solutions to the Drift-Diffusion System
- Commutator estimates and the euler and navier-stokes equations
- Weakly Differentiable Functions
- QUALITATIVE BEHAVIOR OF SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
- ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO DRIFT-DIFFUSION SYSTEM WITH GENERALIZED DISSIPATION
- The random walk's guide to anomalous diffusion: A fractional dynamics approach
This page was built for publication: Asymptotic behavior of solutions to the drift-diffusion equation with critical dissipation