Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves
DOI10.1007/s00039-016-0357-8zbMath1361.47004arXiv1510.00045OpenAlexW2964069050MaRDI QIDQ295851
Lukas Schimmer, A. A. Laptev, L. A. Takhtadzhyan
Publication date: 14 June 2016
Published in: Geometric and Functional Analysis. GAFA (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1510.00045
Calabi-Yau manifolds (algebro-geometric aspects) (14J32) Spectrum, resolvent (47A10) Linear symmetric and selfadjoint operators (unbounded) (47B25) (3)-folds (14J30) Difference operators (39A70) Linear difference operators (47B39) Relationships between algebraic curves and physics (14H81)
Related Items (22)
Cites Work
- Operators from mirror curves and the quantum dilogarithm
- Topological strings from quantum mechanics
- Nonclassical eigenvalue asymptotics
- Topological strings and integrable hierarchies
- Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces
- Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze
- The classical limit of quantum spin systems
- The spectral theory of a functional-difference operator in conformal field theory
- COVARIANT AND CONTRAVARIANT SYMBOLS OF OPERATORS
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves