Complete hypersurfaces with constant Laguerre scalar curvature in \(\mathbb R^n\)
From MaRDI portal
Publication:296176
DOI10.1007/s10114-016-4531-6zbMath1343.53016OpenAlexW2346671473MaRDI QIDQ296176
Publication date: 14 June 2016
Published in: Acta Mathematica Sinica. English Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10114-016-4531-6
Cites Work
- Unnamed Item
- Unnamed Item
- Classification of hypersurfaces with constant Laguerre eigenvalues in \(\mathbb R^{n }\)
- Laguerre geometry of hypersurfaces in \({\mathbb R}^n\)
- Immersed hypersurfaces in the unit sphere \(S^{m+1}\) with constant Blaschke eigenvalues
- Classification of hypersurfaces with parallel Laguerre second fundamental form in \(\mathbb R^n\)
- Moebius geometry of submanifolds in \(\mathbb{S}^n\)
- Generalized Cartan identities on isoparametric manifolds
- Möbius isotropic submanifolds in \(\mathbb{S}^n\)
- Möbius isoparametric hypersurfaces in \(S^{n+1}\) with two distinct principal curvatures
- Laguerre geometry of surfaces in \(\mathbb R^3\)
- Isometric immersions of Riemannian manifolds
- Classification of Möbius Isoparametric Hypersurfaces in 4
- Harmonic functions on complete riemannian manifolds
- Hypersurfaces and a Pinching Problem on the Second Fundamental Tensor