The spinorial energy functional: solutions of the gradient flow on Berger spheres
From MaRDI portal
Publication:300423
DOI10.1007/S10455-015-9494-9zbMath1376.49056arXiv1510.04865OpenAlexW3103784572WikidataQ124838787 ScholiaQ124838787MaRDI QIDQ300423
Publication date: 28 June 2016
Published in: Annals of Global Analysis and Geometry (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1510.04865
Related Items (2)
Eigenvalues of the Dirac operator on compact spin manifolds under Ricci flow ⋮ Geometric Flows of $${{\,\mathrm{G\!}\,}}_2$$ Structures
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A spinorial energy functional: critical points and gradient flow
- Flow by mean curvature of convex surfaces into spheres
- The spinorial energy functional on surfaces
- Spineurs, opérateurs de Dirac et variations de métriques. (Spinors, Dirac operators and variations of the metrics)
- The Dirac operator on nilmanifolds and collapsing circle bundles
- Generalized cylinders in semi-Riemannian and spin geometry
This page was built for publication: The spinorial energy functional: solutions of the gradient flow on Berger spheres