Lifting $D$-modules from positive to zero characteristic
DOI10.24033/bsmf.2606zbMath1233.13009OpenAlexW23235368MaRDI QIDQ3004485
Publication date: 3 June 2011
Published in: Bulletin de la Société mathématique de France (Search for Journal in Brave)
Full work available at URL: http://smf4.emath.fr/en/Publications/Bulletin/139/html/smf_bull_139_193-242.php
monoidal categoriesdeformation theorydifferential Galois theory\(D\)-modulesgroup schemes in mixed characteristic
Commutative rings of differential operators and their modules (13N10) Special categories (18B99) Differential algebra (12H05) (p)-adic differential equations (12H25) Deformations and infinitesimal methods in commutative ring theory (13D10) Group schemes (14L15) Local deformation theory, Artin approximation, etc. (14B12)
Related Items (2)
Cites Work
- Fundamental group schemes for stratified sheaves
- Schémas en groupes. I: Propriétés générales des schémas en groupes. Exposés I à VIIb. Séminaire de Géométrie Algébrique 1962/64, dirigé par Michel Demazure et Alexander Grothendieck. Revised reprint
- Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin
- Categories tannakiennes
- The behaviour of the differential Galois group on the generic and special fibres: A Tannakian approach
- Notes on Crystalline Cohomology. (MN-21)
- Iterative differential equations and the Abhyankar conjecture
- ${\cal D}$-modules arithmétiques. II: Descente par Frobenius
- ${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini
- Categorical algebra
- Schémas en groupes réductifs
- Functors of Artin Rings
- The deformation theory of representations of fundamental groups of compact Kähler manifolds
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Lifting $D$-modules from positive to zero characteristic