The Hasse principle for bilinear symmetric forms over a ring of integers of a global function field
From MaRDI portal
Publication:301449
DOI10.1016/j.jnt.2016.04.004zbMath1401.11078arXiv1503.05207OpenAlexW1626888298MaRDI QIDQ301449
Publication date: 30 June 2016
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1503.05207
Related Items (2)
On the classification of quadratic forms over an integral domain of a global function field ⋮ On the genera of semisimple groups defined over an integral domain of a global function field
Cites Work
- Abelian class groups of reductive group schemes
- On a notion of ``Galois closure for extensions of rings
- Strong approximation for semi-simple groups over function fields
- Unimodular quadratic forms over global function fields
- Quasi-abelian crossed modules and nonabelian cohomology
- Seminar of algebraic geometry du Bois-Marie 1963--1964. Topos theory and étale cohomology of schemes (SGA 4). Vol. 1: Topos theory. Exp. I--IV
- Néron Models
- On S-class number relations of algebraic tori in Galois extensions of global fields
- Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III.
- Clifford Algebras and Spinor Norms Over a Commutative Ring
- A.D. Alexandrov spaces with curvature bounded below
- Galois Groups and Fundamental Groups
- Finiteness theorems for algebraic groups over function fields
- On unique factorization domains
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Hasse principle for bilinear symmetric forms over a ring of integers of a global function field