Riemann-Hilbert correspondence for holonomic \(\mathcal{D}\)-modules
DOI10.1007/s10240-015-0076-yzbMath1351.32017arXiv1311.2374OpenAlexW3101813914MaRDI QIDQ301604
Andrea D'Agnolo, Masaki Kashiwara
Publication date: 1 July 2016
Published in: Publications Mathématiques (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1311.2374
monodromytempered distributionsRiemann-Hilbert correspondenceirregular holonomic \(\mathcal D\)-modulestempered holomorphic functions
Sheaves of differential operators and their modules, (D)-modules (32C38) Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs (35A27) Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects) (32S60) Riemann-Hilbert problems in context of PDEs (35Q15) Stokes phenomena and connection problems (linear and nonlinear) for ordinary differential equations in the complex domain (34M40)
Related Items
Cites Work
- Introduction to Stokes structures
- Asymptotic analysis for integrable connections with irregular singular points
- Good formal structures for flat meromorphic connections. I: Surfaces
- The Riemann-Hilbert problem for holonomic systems
- Leray's quantization of projective duality
- On a reconstruction theorem for holonomic systems
- Microlocal condition for non-displaceability
- An existence theorem for tempered solutions of \(\mathcal {D}\)-modules on complex curves
- Equations différentielles à points singuliers réguliers
- Preconstructibility of Tempered Solutions of Holonomic 𝒟-modules
- Good formal structures for flat meromorphic connections, II: Excellent schemes
- Wild Harmonic Bundles and Wild Pure Twistor D-modules
- On the Laplace Transform for Tempered Holomorphic Functions
- Good formal structure for meromorphic flat connections on smooth projective surfaces
- Microlocal Theory of Sheaves and Tamarkin’s Non Displaceability Theorem
- Moderate and formal cohomology associated with constructible sheaves
- Categories and Sheaves
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item