Harmonic morphisms applied to classical potential theory
From MaRDI portal
Publication:3016241
DOI10.1215/00277630-1260468zbMath1235.31002OpenAlexW1531925050MaRDI QIDQ3016241
Publication date: 14 July 2011
Published in: Nagoya Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1215/00277630-1260468
Harmonic, subharmonic, superharmonic functions in higher dimensions (31B05) Fine potential theory; fine properties of sets and functions (31C40) Harmonic, subharmonic, superharmonic functions on other spaces (31C05) Potential theory on Riemannian manifolds and other spaces (31C12)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lectures on potential theory. Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy
- Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel
- A mapping of Riemannian manifolds which preserves harmonic functions
- Harmonic morphisms between Riemannian manifolds
- Harnack sets and openness of harmonic morphisms
- Potential theory. An analytic and probabilistic approach to balayage
- A co-fine domination principle for harmonic spaces
- Abbildungen harmonischer Räume mit Anwendung auf die Laplace- und Wärmeleitungsgleichung. (Mappings of harmonic spaces with applications to the Laplace equation and the heat equation)
- Connexion en topologie fine et balayage des mesures. (Connection on fine topology and balayage of measures.)
- Compactification des espaces harmoniques
- Finely harmonic functions
- The Riesz decomposition of finely superharmonic functions
- On the Lindelöf principle
- The Lusin-Privalov theorem for subharmonic functions
- Harmonic morphisms in nonlinear potential theory
- Covering properties of harmonic Bl-mappings III
- Finely harmonic mappings and finely holomorphic mappings
- Growth properties of superharmonic functions along rays
- Compactifications of Harmonic Spaces
- Applications to analysis of a topological definition of smallness of a set
- Étude des fonctions sousharmoniques dans un cylindre ou dans un cône