Brackets with \((\tau,\sigma)\)-derivations and \((p,q)\)-deformations of Witt and Virasoro algebras
DOI10.1515/forum-2014-0132zbMath1404.17034arXiv1403.6291OpenAlexW2119309878MaRDI QIDQ302308
Sergei D. Silvestrov, Olivier Elchinger, Karl Lundengård, Abdenacer Makhlouf
Publication date: 5 July 2016
Published in: Forum Mathematicum (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1403.6291
Witt algebraVirasoro algebra\((\tau,\sigma)\)-derivation\((p,q)\)-deformation\(\mathfrak{sl}\)(2) algebraHom-Lie algebraquasi-Lie algebra
Virasoro and related algebras (17B68) Automorphisms, derivations, other operators for Lie algebras and super algebras (17B40) Lie (super)algebras associated with other structures (associative, Jordan, etc.) (17B60) Nonassociative algebras satisfying other identities (17A30) Automorphisms, derivations, other operators (nonassociative rings and algebras) (17A36)
Related Items (19)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(q\)-deformation of the Virasoro algebra with central extension
- Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms
- Hom-alternative, Hom-Malcev and Hom-Jordan superalgebras
- Quantum group interpretation of some conformal field theories
- On hom-algebras with surjective twisting
- Hom-Lie superalgebras and Hom-Lie admissible superalgebras
- Representations of hom-Lie algebras
- Representations and cohomology of \(n\)-ary multiplicative Hom-Nambu-Lie algebras
- Cyclic homology of differential operators, the Virasoro algebra and a \(q\)-analogue
- Characterizations of the quantum Witt algebra
- Quantum Lie superalgebras and q-oscillators
- Deformations of Lie algebras using \(\sigma\)-derivations
- Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities
- Hom-algebra structures
- Unital algebras of Hom-associative type and surjective or injective twistings
- \(L_{\infty}\)-formality check for the Hochschild complex of certain universal enveloping algebras
- GENERALIZED DEFORMED VIRASORO ALGEBRAS
- Hom-bialgebras and comodule Hom-algebras
- Paradigm of Nonassociative Hom-algebras and Hom-superalgebras
- Monoidal Hom–Hopf Algebras
- Hom-quasi-bialgebras
- On the polar decomposition of the quantum SU(2) algebra
- Ternaryq-Virasoro–Witt Hom–Nambu–Lie algebras
- Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras
- Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras
- The Hom–Yang–Baxter equation, Hom–Lie algebras, and quasi-triangular bialgebras
- Hom-algebras and homology
- HOM-ALGEBRAS AND HOM-COALGEBRAS
- Branes, Quantum Nambu Brackets and the Hydrogen Atom
- The Hom–Yang–Baxter equation and Hom–Lie algebras
- Cohomology of Hom-Lie superalgebras and q-deformed Witt superalgebra
- Rota–Baxter Hom-Lie–Admissible Algebras
- Yetter-Drinfeld modules for Hom-bialgebras
- Quasi-Deformations of 𝔰𝔩2(𝔽) Using Twisted Derivations
This page was built for publication: Brackets with \((\tau,\sigma)\)-derivations and \((p,q)\)-deformations of Witt and Virasoro algebras