An asymptotic version of a conjecture by Enomoto and Ota
From MaRDI portal
Publication:3055903
DOI10.1002/jgt.20437zbMath1208.05116OpenAlexW4244897311WikidataQ123092207 ScholiaQ123092207MaRDI QIDQ3055903
Colton Magnant, Daniel M. Martin
Publication date: 10 November 2010
Published in: Journal of Graph Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/jgt.20437
Paths and cycles (05C38) Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.) (05C70)
Related Items (4)
Note on semi-linkage with almost prescribed lengths in large graphs ⋮ Degree conditions for the existence of vertex-disjoint cycles and paths: a survey ⋮ Note on Enomoto and Ota's conjecture for short paths in large graphs ⋮ Enomoto and Ota's conjecture holds for large graphs
Cites Work
- Unnamed Item
- Hamilton connected graphs
- On circuits in graphs
- Graph partition into paths containing specified vertices
- Distributing vertices on Hamiltonian cycles
- Note on Hamilton Circuits
- [https://portal.mardi4nfdi.de/wiki/Publication:4242796 An El-Zah�r type condition ensuring path-factors]
- Partitions of a graph into paths with prescribed endvertices and lengths
- Some Theorems on Abstract Graphs
- Graph partition problems into cycles and paths
This page was built for publication: An asymptotic version of a conjecture by Enomoto and Ota