On 𝑃-orderings, rings of integer-valued polynomials, and ultrametric analysis

From MaRDI portal
Publication:3058270

DOI10.1090/S0894-0347-09-00638-9zbMath1219.11047MaRDI QIDQ3058270

Manjul Bhargava

Publication date: 19 November 2010

Published in: Journal of the American Mathematical Society (Search for Journal in Brave)




Related Items (19)

On algorithms to find \(p\)-orderingAlgebraic-integer valued polynomialsBhargava’s Early Work: The Genesis of <em>P</em>-OrderingsWhat You Should Know About Integer-Valued PolynomialsInteger-Valued Polynomials: Looking for Regular Bases (A Survey)The factorial function and generalizations, extendedThe Bhargava greedoidInteger valued polynomials on lower triangular integer matricesRegular subsets of valued fields and Bhargava's \(v\)-orderingsInteger-valued polynomials over matrices and divided differencesBhargava rings that are Prüfer v-multiplication domainsComputing <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>r</mml:mi></mml:math>-removed <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi></mml:math>-orderings and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi></mml:math>-orderings of order <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi></mml:math>An overview of some recent developments on integer-valued polynomials: Answers and QuestionsFinite generation properties for various rings of integer-valued polynomialsA greedoid and a matroid inspired by Bhargava's \(p\)-orderingsSuper-additive sequences and algebras of polynomialsFunctions with integer-valued divided differencesAbout Polynomials Whose Divided Differences are Integer-Valued on Prime NumbersThe ring of polynomials integral-valued over a finite set of integral elements



Cites Work


This page was built for publication: On 𝑃-orderings, rings of integer-valued polynomials, and ultrametric analysis