On the Lefschetz zeta function for quasi-unipotent maps on the \(n\)-dimensional torus. II: The general case.
DOI10.1016/j.topol.2016.07.020zbMath1372.37082OpenAlexW2496905035MaRDI QIDQ306156
Marcos J. González, Alberto Mendoza, Pedro Berrizbeitia, Victor F. Sirvent
Publication date: 31 August 2016
Published in: Topology and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.topol.2016.07.020
periodic pointLefschetz numberLefschetz zeta functioncyclotomic polynomialMorse-Smale diffeomorphismquasi-unipotent map
Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics (37C25) Combinatorial dynamics (types of periodic orbits) (37E15) Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc. (37C30) Cyclotomy (11T22) Morse-Smale systems (37D15)
Related Items
Cites Work
- Morse-Smale diffeomorphisms on tori
- Periodic points on tori
- The periodic behavior of Morse-Smale diffeomorphisms
- Homology theory and dynamical systems
- Periods and Lefschetz zeta functions
- Minimal sets of periods for torus maps via Nielsen numbers
- On periodic points
- The Dirichlet unit theorem, induced characters, and Whitehead groups of finite groups
- Cyclotomic polynomials and minimal sets of Lefschetz periods
- Minimal Lefschetz sets of periods for Morse–Smale diffeomorphisms on then-dimensional torus
- The number of periodic points of smooth maps
- The Dynamics of Morse-Smale Diffeomorphisms on the Torus
- Nielsen Numbers of Maps of Tori
- Some Smooth Maps with Infinitely Many Hyperbolic Peridoic Points
- Period Three Implies Chaos
- Periodic points of holomorphic maps via Lefschetz numbers
- THE BEHAVIOR OF THE INDEX OF PERIODIC POINTS UNDER ITERATIONS OF A MAPPING
- Minimal sets of periods for Morse–Smale diffeomorphisms on non-orientable compact surfaces without boundary
- On the Lefschetz zeta function for quasi-unipotent maps on then-dimensional torus
- Differentiable dynamical systems
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item