On the Choice of the Ridge Parameter: A Maximum Entropy Approach
From MaRDI portal
Publication:3072396
DOI10.1080/03610918.2010.508861zbMath1205.62096OpenAlexW2087013911MaRDI QIDQ3072396
Pedro Macedo, Elvira Silva, Manuel G. Scotto
Publication date: 3 February 2011
Published in: Communications in Statistics - Simulation and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610918.2010.508861
Estimation in multivariate analysis (62H12) Ridge regression; shrinkage estimators (Lasso) (62J07) Monte Carlo methods (65C05) Statistical aspects of information-theoretic topics (62B10)
Related Items
Ridge estimation in linear mixed measurement error models using generalized maximum entropy ⋮ Computational Method for Jackknifed Generalized Ridge Tuning Parameter based on Generalized Maximum Entropy ⋮ Regularization with Maximum Entropy and Quantum Electrodynamics: The Merg(E) Estimators ⋮ Ridge-GME estimation in linear mixed models ⋮ Ridge Regression and Generalized Maximum Entropy: An improved version of the Ridge–GME parameter estimator
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A new biased estimator based on ridge estimation
- Comparative statics of the generalized maximum entropy estimator of the general linear model
- Some Modifications for Choosing Ridge Parameters
- A Monte Carlo Study of Recent Ridge Parameters
- On Some Ridge Regression Estimators: An Empirical Comparisons
- Penalized Maximum Likelihood Principle for Choosing Ridge Parameter
- Ridge regression:some simulations
- Choosing Ridge Parameter for Regression Problems
- Performance of Some New Ridge Regression Estimators
- Using Liu-Type Estimator to Combat Collinearity
- Characterization of Ridge Trace Behavior
- Imposing parameter inequality restrictions using the principle of maximum entropy