Good formal structures for flat meromorphic connections, II: Excellent schemes
From MaRDI portal
Publication:3074556
DOI10.1090/S0894-0347-2010-00681-9zbMath1282.14037arXiv1001.0544OpenAlexW2963567434MaRDI QIDQ3074556
Publication date: 9 February 2011
Published in: Journal of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1001.0544
algebraic varietydifferential schemeflat meromorphic connectionscomplex analytic varietyexcellent schemesgood formal structure
Sheaves of differential operators and their modules, (D)-modules (32C38) Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials (14F10)
Related Items
Integrable deformations and degenerations of some irregular singularities ⋮ Good formal structures for flat meromorphic connections. III: Irregularity and turning loci ⋮ Notes on isocrystals ⋮ Local and global structure of connections on nonarchimedean curves ⋮ Riemann-Hilbert correspondence for holonomic \(\mathcal{D}\)-modules ⋮ Inseparable local uniformization ⋮ Riemann-Hilbert correspondence for irregular holonomic \({\mathcal{D}}\)-modules ⋮ Note on algebraic irregular Riemann-Hilbert correspondence ⋮ Topological computation of some Stokes phenomena on the affine line ⋮ Quadratic relations between periods of connections ⋮ Irregular holonomic kernels and Laplace transform ⋮ Moduli of Stokes torsors and singularities of differential equations ⋮ Valuations and asymptotic invariants for sequences of ideals ⋮ On a reconstruction theorem for holonomic systems ⋮ Functorial desingularization of quasi-excellent schemes in characteristic zero: the nonembedded case ⋮ A boundedness theorem for nearby slopes of holonomic -modules ⋮ Higher dimensional Stokes structures are rare ⋮ Good lattices of algebraic connections (with an appendix by Claude Sabbah) ⋮ The Stokes Structure of a good meromorphic flat bundle ⋮ \(\mathbb{C}\)-constructible enhanced ind-sheaves ⋮ Isomonodromic Laplace transform with coalescing eigenvalues and confluence of Fuchsian singularities ⋮ Degenerate Riemann-Hilbert-Birkhoff problems, semisimplicity, and convergence of WDVV-potentials ⋮ On irregularities of Fourier transforms of regular holonomic \(\mathcal{D}\)-modules ⋮ Lefschetz theorems for tamely ramified coverings ⋮ Convergence Polygons for Connections on Nonarchimedean Curves ⋮ Ramification of higher local fields, approaches and questions ⋮ Nonarchimedean geometry of Witt vectors ⋮ Irregular perverse sheaves ⋮ Cleanliness and log-characteristic cycles for vector bundles with flat connections
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(Q\)-universal desingularization
- Continuity of the radius of convergence of differential equations on \(p\)-adic analytic curves
- Asymptotic analysis for integrable connections with irregular singular points
- Valuations and plurisubharmonic singularities
- Desingularization of quasi-excellent schemes in characteristic zero
- Good formal structures for flat meromorphic connections. I: Surfaces
- Zur Komplettierung ausgezeichneter Ringe
- Smoothness, semi-stability and alterations
- Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant
- Relative Riemann-Zariski spaces
- Meromorphic connections. II: The canonic grid
- Inseparable local uniformization
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Troisième partie). Rédigé avec la colloboration de J. Dieudonné
- Critères de platitude et de projectivité. Techniques de platification d'un module. (Criterial of flatness and projectivity. Technics of flatification of a module.)
- Equations différentielles à points singuliers réguliers
- Local uniformization on algebraic varieties
- Wild Harmonic Bundles and Wild Pure Twistor D-modules
- Abhyankar places admit local uniformization in any characteristic
- Semistable reduction for overconvergent F-isocrystals, II: A valuation-theoretic approach
- Semistable reduction for overconvergentF-isocrystals, III: Local semistable reduction at monomial valuations
- Good formal structure for meromorphic flat connections on smooth projective surfaces
- Differential modules onp-adic polyannuli
- Flattening Theorem in Complex-Analytic Geometry
- Linear meromorphic differential equations: A modern point of view
- Semistable reduction for overconvergent $F$-isocrystals I: Unipotence and logarithmic extensions