Positive quadrant dependence tests for copulas
DOI10.1002/cjs.10088zbMath1349.62152OpenAlexW2120626287WikidataQ61719259 ScholiaQ61719259MaRDI QIDQ3086514
Dominik Sznajder, Irène Gijbels, Marek Omelka
Publication date: 30 March 2011
Published in: Canadian Journal of Statistics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1002/cjs.10088
weak convergencecopula functionCramér-von Mises testpositive quadrant dependenceKolmogorov-Smirnov distanceAnderson-Darling test statistic
Nonparametric hypothesis testing (62G10) Asymptotic properties of nonparametric inference (62G20) Characterization and structure theory for multivariate probability distributions; copulas (62H05)
Related Items (15)
Uses Software
Cites Work
- Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing
- Detecting positive quadrant dependence and positive function dependence
- Weak convergence and empirical processes. With applications to statistics
- Estimating the density of a copula function
- Competitors of the Kendall-tau test for testing independence against positive quadrant dependence
- Foundations of Modern Probability
- A semiparametric estimation procedure of dependence parameters in multivariate families of distributions
- Nonparametric estimation of copula functions for dependence modelling
- Some Concepts of Dependence
- Understanding Relationships Using Copulas
- A kolmogorov-smirnov type test for positive quadrant dependence
- A Test of Goodness of Fit
This page was built for publication: Positive quadrant dependence tests for copulas