Bessel potentials in Ahlfors regular metric spaces
From MaRDI portal
Publication:308995
DOI10.1007/s11118-016-9543-4zbMath1348.43013arXiv1506.08182OpenAlexW1484797312MaRDI QIDQ308995
Publication date: 6 September 2016
Published in: Potential Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1506.08182
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Harmonic analysis on homogeneous spaces (43A85) Potential theory on fractals and metric spaces (31E05)
Cites Work
- Unnamed Item
- Unnamed Item
- New characterizations of Hajłasz-Sobolev spaces on metric spaces
- Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation. (Calderón-Zygmund operators, para-accretive functions and interpolation)
- Lipschitz functions on spaces of homogeneous type
- Homeomorphisms acting on Besov and Triebel-Lizorkin spaces of local regularity \(\psi(t)\)
- A note on Hajłasz-Sobolev spaces on fractals
- On fractional differentiation and integration on spaces of homogeneous type
- Sobolev spaces on an arbitrary metric space
- Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces
- Modern Fourier Analysis
- Interpolation properties of Besov spaces defined on metric spaces
- Potential spaces on fractals
This page was built for publication: Bessel potentials in Ahlfors regular metric spaces