Joint Mean-Covariance Models with Applications to Longitudinal Data in Partially Linear Model
From MaRDI portal
Publication:3100637
DOI10.1080/03610926.2010.491590zbMath1227.62028OpenAlexW2026600523MaRDI QIDQ3100637
Publication date: 18 November 2011
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610926.2010.491590
Asymptotic properties of parametric estimators (62F12) Nonparametric regression and quantile regression (62G08) Estimation in multivariate analysis (62H12) Asymptotic properties of nonparametric inference (62G20) Linear regression; mixed models (62J05)
Related Items
Cites Work
- Longitudinal data analysis using generalized linear models
- Quasi-likelihood functions
- Estimation of the covariance matrix of random effects in longitudinal studies
- Nonparametric estimation of large covariance matrices of longitudinal data
- Modelling of covariance structures in generalised estimating equations for longitudinal data
- The Matrix-Logarithmic Covariance Model
- Semiparametric Stochastic Mixed Models for Longitudinal Data
- Estimation in a semiparametric model for longitudinal data with unspecified dependence structure
- On modelling mean-covariance structures in longitudinal studies
- Semiparametric Regression for Clustered Data Using Generalized Estimating Equations
- Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix
- Varying-coefficient models and basis function approximations for the analysis of repeated measurements
- Nonparametric Estimation of Covariance Structure in Longitudinal Data
- Semiparametric Models for Longitudinal Data with Application to CD4 Cell Numbers in HIV Seroconverters
- Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation
- Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function
- Semiparametric Estimation of Covariance Matrixes for Longitudinal Data
- Covariance matrix selection and estimation via penalised normal likelihood
- New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis