A MODIFIED LINDSTEDT–POINCARE METHOD FOR A STRONGLY NON-LINEAR TWO DEGREE-OF-FREEDOM SYSTEM
From MaRDI portal
Publication:3118222
DOI10.1006/JSVI.1996.0313zbMath1232.70019OpenAlexW2074688500MaRDI QIDQ3118222
No author found.
Publication date: 1 March 2012
Published in: Journal of Sound and Vibration (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jsvi.1996.0313
Related Items (11)
Application of a modified Lindstedt-Poincaré method in coupled TDOF systems with quadratic nonlinearity and a constant external excitation ⋮ A mathematical model for horizontal axis wind turbine blades ⋮ The existence, stability and approximate expressions of periodic solutions of strongly nonlinear nonautonomous systems with multi-degrees-of-freedom ⋮ Homoclinic and heteroclinic solutions of cubic strongly nonlinear autonomous oscillators by the hyperbolic perturbation method ⋮ A method to stochastic dynamical systems with strong nonlinearity and fractional damping ⋮ Application of the improved complex normal form method based on He's energy balance method to a noise included nonlinear oscillator ⋮ Primary resonance of multiple degree-of-freedom dynamic systems with strong non-linearity using the homotopy analysis method ⋮ Role of initial conditions in the dynamics of a double pendulum at low energies ⋮ The MLP method for subharmonic and ultra-harmonic resonance solutions of strongly nonlinear systems ⋮ Periodic solution of the strongly nonlinear asymmetry system with the dynamic frequency method ⋮ Strongly resonant bifurcations of nonlinearly coupled van der Pol-Duffing oscillator
This page was built for publication: A MODIFIED LINDSTEDT–POINCARE METHOD FOR A STRONGLY NON-LINEAR TWO DEGREE-OF-FREEDOM SYSTEM