Анализ свойств кривых ползучести с произвольной начальной стадией нагружения, порождаемых линейной теорией наследственности
DOI10.14498/vsgtu1543zbMath1424.74017OpenAlexW2810792052MaRDI QIDQ3120949
Publication date: 19 March 2019
Published in: Вестник Самарского государственного технического университета. Серия «Физико-математические науки» (Search for Journal in Brave)
Full work available at URL: http://mathnet.ru/eng/vsgtu1543
convergencelinear viscoelasticitytwo-sided boundsfading memoryfractional modelsramp loadingrise timecreep compliancedeviation asymptoticsinitial loading stage influenceloading program shaperegular and singular modelstheoretic creep curves
Linear constitutive equations for materials with memory (74D05) Theory of constitutive functions in solid mechanics (74A20)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Experimental investigation and modeling of non-monotonic creep behavior in polymers
- Fractional visco-elastic Timoshenko beam from elastic Euler-Bernoulli beam
- Time-dependent response of polypropylene after strain reversal
- Polynomial operators, Stieltjes convolution, and fractional calculus in hereditary mechanics
- Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
- Constitutive equations for ligament and other soft tissue: evaluation by experiment
- Mechanical stress relaxation in polymers: Fractional integral model versus fractional differential model
- Numerical interconversion between linear viscoelastic material functions with regularization
- Integral representations of \(\owns_{\gamma}\) functions and their application to problems in linear viscoelasticity
- Applications of Fractional Calculus to the Theory of Viscoelasticity
- On the Fractional Calculus Model of Viscoelastic Behavior
- Математическое моделирование наследственно упругого деформируемого тела на основе структурных моделей и аппарата дробного интегро-дифференцирования Римана-Лиувилля
- Реологические модели вязкоупругого тела с памятью и дифференциальные уравнения дробных осцилляторов
- Elastic and viscoelastic behavior of chiral materials
This page was built for publication: Анализ свойств кривых ползучести с произвольной начальной стадией нагружения, порождаемых линейной теорией наследственности