Constancy of generalized Hodge–Tate weights of a local system
From MaRDI portal
Publication:3121278
DOI10.1112/S0010437X1800742XzbMath1423.14173arXiv1710.08888WikidataQ128911800 ScholiaQ128911800MaRDI QIDQ3121278
Publication date: 15 March 2019
Published in: Compositio Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1710.08888
Related Items
A -adic monodromy theorem for de Rham local systems ⋮ Geometrically irreducible \(p\)-adic local systems are de Rham up to a twist
Cites Work
- Rigidity and a Riemann-Hilbert correspondence for \(p\)-adic local systems
- Purity for Hodge-Tate representations
- The analytic variation of p-adic Hodge structure
- Continuous cohomology and \(p\)-adic Galois representations
- A generalization of formal schemes and rigid analytic varieties
- A generalization of Sen's theory.
- \(p\)-adic representations and differential equations
- Integral \(p\)-adic Hodge theory
- Notes on the local \(p\)-adic Simpson correspondence
- Perfectoid spaces
- \(p\)-adic Hodge theory in rigid analytic families
- Equations différentielles à points singuliers réguliers
- A \(p\)-adic Simpson correspondence
- The p-adic Simpson Correspondence
- -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES
- -ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES – CORRIGENDUM
- Une application des variétés de Hecke des groupes unitaires
- $\mathrm{B}_{\mathrm{dR}}$-représentations dans le cas relatif
- On the Hodge-Tage decomposition in the imperfect residue field case.
- An Introduction to "G"-Functions. (AM-133)
- Berkeley Lectures on p-adic Geometry
- Relative p-adic Hodge theory: Foundations
- An infinite dimensional Hodge-Tate theory
- De Rham cohomology of differential modules on algebraic varieties
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item