Numerical radius attaining compact linear operators
From MaRDI portal
Publication:313502
DOI10.1016/j.jmaa.2016.02.074zbMath1359.46006arXiv1602.07084OpenAlexW2276242352WikidataQ60013012 ScholiaQ60013012MaRDI QIDQ313502
Javier Merí, Miguel Martín, Ángela Capel
Publication date: 12 September 2016
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1602.07084
Numerical range, numerical radius (47A12) Spaces of operators; tensor products; approximation properties (46B28) Isometric theory of Banach spaces (46B04)
Related Items
The Bishop–Phelps–Bollobás Theorem: An Overview, On the Crawford number attaining operators, The Bishop-Phelps-Bollobás property and absolute sums, Vector-valued numerical radius and \(\sigma\)-porosity
Cites Work
- The version for compact operators of Lindenstrauss properties A and B
- Norm attaining operators on some classical Banach spaces
- Every real Banach space can be renormed to satisfy the denseness of numerical radius attaining operators
- Geometry of Banach spaces with \((\alpha,\epsilon)\)-property or \((\beta,\epsilon)\)-property
- Norm attaining operators from \(L_1 (\mu)\) into \(L_{\infty} (\nu)\)
- A counterexample on numerical radius attaining operators
- On CL-spaces and almost CL-spaces
- Norm-attaining compact operators
- On operators which attain their norm
- Numerical index of vector-valued function spaces
- ALMOST FRÉCHET DIFFERENTIABILITY OF LIPSCHITZ MAPPINGS BETWEEN INFINITE-DIMENSIONAL BANACH SPACES
- Numerical Radius Attaining Operators and the Radon-Nikodym Property
- Numerical Radius-Attaining Operators on C(K)
- The Bishop-Phelps-Bollobás version of Lindenstrauss properties A and B
- Non-Associative Normed Algebras
- The Numerical Index of a Normed Space
- Norm attaining operators
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item